Diffusion anisotropy of the internal capsule and the corona radiata in association with stroke and tumors as measured by diffusion-weighted MR imaging.
نویسندگان
چکیده
BACKGROUND AND PURPOSE Diffusion-weighted MR images have enabled measurement of directionality of diffusion (anisotropy) in white matter. To investigate differences in the anisotropy for various types of pathologic findings and the association between the anisotropy of tracts and neurologic dysfunction, we compared the anisotropy of the posterior limb of the internal capsule and the corona radiata between patients with stroke and those with tumors and between patients with and without hemiparesis. METHODS Thirty-three patients consisting of 11 with tumors and 22 with ischemic disease (16 acute infarction, four old infarction, and two transient ischemic attack) and nine control patients were studied with a 1.5-T MR imager. Diffusion-weighted images were obtained with diffusion gradients applied in three orthogonal directions. The diffusion anisotropy measurements were obtained from regions of interests defined within the internal capsule and the corona radiata. RESULTS The diffusion anisotropy was significantly reduced in all internal capsules and coronae radiata involved by infarcts, tumors, and peritumoral edema compared with that of the control patients (P <.0001). This reduction was most prominent in the tracts involved by tumors (P <.05). The anisotropy of the internal capsules and coronae radiata was significantly decreased in cases with moderate-to-severe hemiparesis as compared with those with no or mild hemiparesis (P <.0001). Diffusion anisotropy tended to be also reduced in normal-appearing internal capsules and coronae radiata that were remote from the involved segment of the corticospinal tract. CONCLUSION The degree of impaired diffusion anisotropy may vary in different pathologic conditions and correlate with neurologic dysfunction. The measurement of diffusion anisotropy may provide additional information relating to neurologic function and transneuronal effects.
منابع مشابه
Evaluation of Diffusion Anisotropy and Diffusion Shape in Grading of Glial Tumors
Background: The most common primary tumors of brain are gliomas. Grading of tumor is vital for designing proper treatment plans. The gold standard choice to determine the grade of glial tumor is biopsy which is an invasive method.Objective: In this study, we try to investigate the role of fractional anisotropy (diffusion anisotropy) and linear anisotropy ...
متن کاملMultiple prominent dilated perivascular spaces do not induce Wallerian degeneration as evaluated by diffusion tensor imaging.
It is unknown whether dilated perivascular spaces can affect the adjacent neuronal fibers. We describe conventional MR and diffusion tensor imaging findings of a case with multiple, prominent dilated perivascular spaces in the left cerebral hemisphere. Diffusion tensor imaging showed no alterations in the fractional anisotropy and apparent diffusion coefficient values for the corona radiata, po...
متن کاملQuantitative assessment of amyotrophic lateral sclerosis with diffusion tensor imaging in 3.0T magnetic resonance.
Diffusion tensor imaging (DTI) was used to measure the fractional anisotropy (FA) and apparent diffusion coefficient (ADC) value in amyotrophic lateral sclerosis (ALS) patients to determine their diagnostic value. 69 ALS patients and 23 healthy controls were scanned with DTI sequence in 3.0T MR, and FA and ADC values in 18 regions were evaluated. Compared with the controls, the ADC values of pa...
متن کاملDynamic Contrast Magnetic Resonance Imaging (DCE-MRI) and Diffusion Weighted MR Imaging (DWI) for Differentiation between Benign and Malignant Salivary Gland Tumors
Background: Salivary gland tumors form nearly 3% of head and neck tumors. Due to their large histological variety and vicinity to facial nerves, pre-operative diagnosis and differentiation of benign and malignant parotid tumors are a major challenge for radiologists. Objective: The majority of these tumors are benign; however, sometimes they tend to transform into a malignant form. Functional M...
متن کاملDifferentiation of active tumor from edematous regions of glioblastoma multiform tumor in diffusion MR images using heterogeneity analysis method
Background: Due to intrinsic heterogeneity of cellular distribution and density within diffusion weighted images (DWI) of glioblastoma multiform (GBM) tumors, differentiation of active tumor and peri-tumoral edema regions within these tumors is challenging. The aim of this paper was to take advantage of the differences among heterogeneity of active tumor and edematous regions within the gliobla...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- AJNR. American journal of neuroradiology
دوره 22 3 شماره
صفحات -
تاریخ انتشار 2001